View All IPG Photonics Laser Products —VISIT CORPORATE WEBSITE

Laser Processing Solutions for Li-ion Cells

Although there are minor differences between cylindrical, prismatic or pouch designs, the cell manufacturing process typically uses laser processing for the cutting and notching of foils, welding of the foil stacks to tabs, and cell case injection hole sealing, safety valve welding, and cap-to-case sealing. Together with emerging technologies such as laser drying of the electrode coating, these processes consistently deliver the high speed and high yield required for high-volume Li-ion cell production.

Contact an E-Mobility expert to learn more about how IPG laser solutions can optimize your Li-ion battery cell production.

Laser Processing Provides Unique Benefits for EV Manufacturers

Repeatable, High-Quality Electrode Foil Cutting

Laser cutting, also known as laser slitting, is a non-contact process that has the flexibility to cut foils of any shape and is not susceptible to foil edge quality degradations due to die punching tool wear. Using the most reliable nanosecond pulsed lasers in the industry, IPG laser solutions deliver the fastest foil cutting with the highest cut quality.


High Yield Foil-to-Tab Welding

Compared to alternate technologies where excess mechanical force can create metal fractures, laser welding is a fast, non-contact joining process with consistently high yields. Dual-beam laser welding technology greatly minimizes copper and aluminum welding defects at significantly higher speeds than green or blue wavelength laser alternatives.

Copper foil welded to plate



Faster, More Reliable Injection Hole Sealing

Quasi-Continuous Wave lasers minimize heat input using bursts of high peak power to create high-quality injection hole seals at high speeds and use a highly reliable, air-cooled solid state fiber laser design that greatly increases tool uptime.


High Throughput Cap-to-Can Welding

Dual-beam lasers create hermetic cap-to-can welds at the high welding speeds that are necessary for large-format prismatic or blade batteries. IPG offers the widest selection of dual-beam laser configurations, enabling real-time dynamic power control of the core and ring beams to perfectly match cell enclosure seal requirements.

Ultra-Efficient Electrode Foil Drying

While traditional foil drying furnaces use fossil fuels and may be up to 100 meters long, laser drying eliminates the fossil fuel consumption carbon footprint and frees up factory floor space and infrastructure. The laser drying process dries over and under the foil surface simultaneously, making it faster and more power efficient than typical convective drying methods.

IPG Image

Discover Your E-Mobility Laser Processing Solution

IPG partners with E-Mobility manufacturers throughout the entire production process from research and development to full-scale manufacturing.

Whether you want to demonstrate feasibility with laser-processed parts or just want to bounce ideas off an experienced laser application engineer, don’t hesitate to contact us.

Contact an E-Mobility Expert

Fiber Laser Processing Technologies

Fiber Laser Sources
for Welding

  • Dual-Beam Lasers Eliminate Spatter

  • Minimized Heat Input

  • Enables High-Speed Welding

Learn More About Laser Sources for Welding

Real-Time Laser Weld Measurement

  • In-Process Laser Weld Quality Assurance
  • Direct Weld Measurement
  • 100% QA With No Added Cycle Time

Learn More About LDD Weld Measurement

Fiber Laser Sources
for Foil Cutting

  • High-Speed, High-Quality Foil Cutting
  • Zero Maintenance, Non-Contact Process
  • Repeatable Cutting of Complex Shapes

Learn More About Laser Sources for Cutting

Fiber Laser Sources for Material Removal

  • High-Throughput Material Removal
  • Non-Contact, Non-Degrading Process
  • Range of Pulses & Beam Profiles

Learn More About Lasers for Material Removal

Diode Laser Sources
for Drying

  • Precise, High-Speed Drying
  • Energy Efficiency > 52%
  • Industry-Leading Diode Lifetimes

Learn More About Laser Sources for Drying